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Abstract—Viscous damper systems are considered as an effective 
passive control device for mitigating vibrations in building 
structures. As a passive control device, viscous dampers are not 
associated with any uncertainty of power-supply failure, thus 
performing as a robust energy dissipating device. The present study 
investigates the performance of linear viscous dampers in vibration-
control of multi-storey building structures specially, considering 
control under seismic loading. In this study, a steel as well as a 
reinforced concrete (RC) 3D framed buildings, both having six 
stories, are considered. To evaluate the effect of eccentricity, three 
building plans like symmetric, T and L-shape are selected having 
similar plan-area. The models are designed and analyzed using 
SAP2000 based on available IS codal provisions to represent a 
typical building structures. Cross sectional areas for both beams and 
columns are kept similar across all three symmetric/asymmetric 
models, therefore, keeping mass of all these models similar for 
efficient comparison. Four cases of damper position-profile are 
studied varying the number and strength (damping coefficient) of 
dampers without varying the total damping. Three objective functions 
are taken into account to measure the control performance like: (a) 
intensity of power spectral density (PSD) (b) inter-storey drift (c) 
maximum top-storey displacement. In PSD analysis, reduction in the 
intensity of PSD (displacement based) is considered. On the other 
hand, time history simulation is performed using white noise 
(ensuring excitations with wider frequency content) to quantify top 
displacement and inter story drift. Comparing with the uncontrolled 
case, the results are obtained like: (a) maximum reduction in the 
intensity of PSD is about 80% for steel and 58% for RC (b) reduction 
in inter-storey drift is about 65% for steel and 16% for RC (c) 
maximum reduction of top-storey displacement is around 60% for 
steel and 13% for RC framed building. 

1. INTRODUCTION 

In the past few decades lot of research works have been 
conducted to study the behavior of control systems used to 
lessen vibrations in structures. Passive control systems are 
widely preferred as these do not require any external power 
supply and only uses the structural motion. Supplemental 
viscous dampers have emerged as a viable option for the 
vibration control of structures. Constantinou(1986-1994) 
tested steel moment resisting frame and reinforced concrete 
building models and a steel bridge model with dampers and all 
exhibited improved resistance to a variety of seismic loads. 

Taylor & Duflot stated when fluid viscous dampers are used 
for seismic or wind protection, the end result is a predictable 
reduction of both stress and deflection in the structure. 
Optimal performance is dependent on the type of structure and 
the level of performance required. Viscous dampers are also 
applicable for retrofitting of structures. Kargahi & Ekwueme 
(2004) concentrated on buildings retrofitted with viscous 
dampers. They presented an optimization technique for 
selecting damper properties that incorporates the nonlinear 
behavior of a building. Further research was carried out taking 
into consideration the asymmetric plan of building. Goel 
(2000) examined how supplemental viscous damping can be 
used to control the excessive deformations in asymmetric-plan 
building. Dicleli & Mehta (2006) aimed at comparing the 
seismic performance of steel chevron braced frames with and 
without viscous fluid dampers as a function of the intensity 
and frequency characteristics of the ground motion and VFD 
parameters. Tubaldi, Barbato & Asta(2014) introduced an 
efficient methodology for assessing the seismic risk of 
structural systems equipped with linear and nonlinear viscous 
damping devices while accounting for the uncertainties 
affecting both seismic input and model parameters. Although 
viscous dampers have proved effective in reduction of 
structural response but the location of the passive control 
devices is a matter of concern. In the recent years studies have 
been carried out to develop the location of dampers in 
structures. Petti & Iuliis(2007) proposed a new approach to 
locating viscous dampers optimally in order to control the 
torsional seismic response of asymmetric-plan buildings. 
Optimal design criteria have then been carried out by 
evaluating the H͚ and H2 norms of the transfer function relating 
the maximum edge displacement to the input seismic 
excitation. Miyamoto, Gilani & Gündoğdu (2013) presented 
seismic design incorporating earthquake protection devices 
leads to optimal design and combination of best engineering 
practice and minimal cost. The research works performed 
showed the efficiency of viscous dampers in various fields. 
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Fig. 2 (b) % reduction of PSD displacement in T shape plan 

 

Fig. 2 (c) % reduction of PSD displacement in L shape plan 

 

Fig. 3: Effect of Eccentricity of triangular damping profile 

3.1.2 Displacement PSD of Steel framed building 

 

Fig. 4: (a) % reduction of PSD displacement in symmetric plan 

 

Fig. 4: (b) % reduction of PSD displacement in T shape plan 

 

Fig. 4: (c) % reduction of PSD displacement in L shape plan 
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Fig. 5: Effect of Eccentricity of lower  
rectangular damping profile 

3.2 Inter-story drift 

The maximum of mean inter-story drift is obtained from linear 
time history analysis using white noise (0.01sec time step) 
excitation. The percentage reduction of inter-story drift for all 
the damping profile cases with compared to uncontrolled cases 
is as follows: 

3.2.1 Inter-story drift of RC framed building: 

 
Fig. 6 (a) % reduction of inter-story drift in symmetric plan 

 
Fig. 6 (b) % reduction of inter-story drift in T shape  

 

Fig. 6: (c) % reduction of inter-story drift in L shape plan 

 

Fig. 7: Effect of Eccentricity of triangular profile  

3.2.1 Inter-story drift of Steel framed building: 

 

Fig. 8: (a) % reduction of inter-story drift in symmetric plan 
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Fig. 8: (b) % reduction of inter-story drift in T shape plan 

 

Fig. 8: (c) % reduction of inter-story drift in L shape  

 

Fig. 9: Effect of Eccentricity of LR damping profile 

3.3 Roof Displacement: 

Average roof displacement also obtained from linear time 
history analysis using white noise (0.01sec time step) 
excitation. The percentage reduction of top displacement for 

all the damping profile cases with compared to uncontrolled 
cases is as follows: 

3.3.1 For RC framed building: 

 

Fig. 10: (a) % reduction of top displacement of symmetric plan 

 
Fig. 10: (b)%reduction of top displacement of T shape 

 

Fig. 10: (c)%reduction of top displacement of L shape  
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Fig. 11: Effect of Eccentricity of triangular profile 

3.3.2 For Steel framed building 

 

Fig. 12: (a) % reduction of top displacement of symmetric plan 

 

Fig. 12: (b) % reduction of top displacement of T shape plan 

 

Fig. 12 (c) % reduction of top displacement of L shape plan 

 

Fig. 13: Effect of Eccentricity of LR profile 

4. CONCLUSION 

From the present study it is observed that  

1. Supplemental fluid viscous dampers are effective in 
reduction of structural response for both RC and steel 
framed buildings. Comparing with the uncontrolled case, 
the results are obtained like: (a) maximum reduction in 
the intensity of PSD is about 80% for steel and 58% for 
RC (b) reduction in inter-storey drift is about 65% for 
steel and 16% for RC (c) maximum reduction of top-
storey displacement is around 60% for steel and 13% for 
RC framed building. 

2. The location of damper in structure influences the 
performance of viscous dampers. Better performance is 
obtained by providing more damping strength at the lower 
stories. Triangular damper position-profile and lower 
rectangular damper position-profile shows better 
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performance for all the three objective functions in RC 
and steel framed building respectively. 

3. Eccentricity of building plan also affects the overall 
performance of viscous damper. The effectiveness 
reduces as eccentricity increases in case of RC framed 
building but in case of steel framed building the variation 
in eccentricity is distinct in all the cases. 
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